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Abstract

We approach Problem 2 of the second Banff Challenge using a nearest neighbor
algorithm to approximate the PDF's for the provided Monte Carlo samples. We boot-
strap the MC samples to incorporate the uncertaties due to the finite samples and the
correlations inherent in the estimation procedure. Toy studies are run to determine
the susceptibility to false positives and the power to identify a true signal. The final
results are then presented.

This study should not be taken as indicative of the standard statistical
procedures used in the BaBar, LSST or any other collaboration with which
the authors are affiliated.
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1 Statement of the problem

This study looks at the Second Banft Challenge, Problem 2, in which we are given 3 Monte
Carlo samples of 5,000 events that represent two background samples and 1 signal sample.
We use this information to develop a procedure to determine which, if any, of the 20,000
provided datasets contain a significant amount of signal.

We fit the datasets using a nearest neighbors algorithm to estimate the PDFs and a boot-
strapping procedure to maginalize over the correlated uncertainties inherent in this approach.
We use Monte Carlo studies (toy studies) to estimate the Type I error rate and the power
of this procedure.

2 Theory and implementation

The second Banff challenge problem problem may be separated into three related inference
problems. First, we must estimate the PDF functions for each of the three Monte Carlo
channels provided. Second, we must infer the observed rates for each signal from the data.
Last, we must report the presence, or lack thereof, of the signal channel.

2.1 Measuring PDFs from Monte Carlo

When determining the measured rates from each channel, we will need to calculate the
probability that an event z; came from a channel. We are not given the functional form
of that PDF, but instead are presented with Monte Carlo samples drawn from the PDF.
The standard response is to either choose an arbitrary functional form to fit to the Monte
Carlo samples via an unbinned maximum likelihood approach or to histogram the samples
to create a step function PDF. Both approaches introduce many new variables, e.g. choice
of parametrization, or bin edges. Either approach may miss the pathological features seen
in the channel Monte Carlos without significant fine tuning. We instead opt for a nearest
neighbor approach.

Since we are only interested in evaluating the PDF for each event channel k at the values for
which we have data, and not for arbitrary data values, we abandon the task of estimating
the PDF for an arbitrary value z. This reduces the problem from estimating a function to
estimating a set of numbers P*(Z) = {P*(z;)} for the kth event channel. For each data
point x; and channel k£, we calculate a probability density by counting the number of nearby
Monte Carlo samples N¥ within a range 7, then dividing by 7, and the total number of
Monte Carlo samples N .
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We enforce normalization by computing the Riemann sum
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The estimate of the PDF will have noise from the finite size of the Monte Carlo sample. In
addition, the values P(x;) will be correlated since the same points are used for neighboring
density estimations. To account for these effects, we produce bootstrap realizations of the
Monte Carlo and calculate PDFs for each random draw. The ensemble of {PJ(Z)}, where j
indexes bootstraps, are random draws from the PDF of P*(#) that includes the uncertainty
from both finite number and correlation.

2.2 Measuring Signal Rates

We perform a modified maximum likelihood analysis to measure the fraction of events N
from each channel ky;, Ky, and ks. To enforce Y;k; = 1, we assign the following priors, with
U(a,b) meaning uniform probability between a and b.

kbl ~ U(Ou 1)
ke ~ U(0,1—ky) (3)
kyo = 1—ky — ko

We apply Bayes’ theorem to derive the basic form of the analysis, where N is the number of
events in the data set, k= (kp1, kp2, ks) 1s a vector of the fractions described above, D= {z;}
represents the measured values in the data set, and P(Z) = (P*1 (), P2 (), PkS( T)) are
the probabilities measured from each event channel for each event in the data set.

P(k|D) < P(D|k)P(k) = P(k) /P P(D|k, P(Z))P(P(&))dP (4)

The PDF P(E) is a combination of the priors from Eq 3 and the priors in the problem
statement, with T"Norm(z|u, o) representing a truncated Gaussian distribution.

P(K) = U(k|0, 1)U (ks|0, 1 — kyy )T Norm (ks N|900, 90)T Norm(kyN|100, 100)  (5)

Similar to a standard maximum likelihood analysis, the probability that a channel k£ produced
an event with value z; is P*(z;). Therefore the likelihood takes the following form, where
the dot product k- P(x;) is a sum over each channel in the fit.

P(D|k, B(Z)) = N P(x, |k, P(x)) = TN - P(x,) (6)

As seen above, the probability P(k:|D) depends on the probablhtles measured for each event
in each channel, P(Z). However, as described in section 2.1, the P(&) have correlated uncer-
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tainties. We also do not care what the actual values of ﬁ(f) are. We therefore marginalize
over P(Z) in Eq 4.

2.3 Model Selection

We need to infer the presence or absence of the signal channel. This is a model selection
problem between k; = 0 and ks as a free parameter, corresponding to no signal and signal,
respectively. Standard Bayesian practice is to compute the ratio of the Bayesian evidence
between the two models. Calculating the Bayesian evidence involves integrating over all
parameters, which may be computationally costly and numerically unstable without proper
Monte Carlo sampling procedures. For reasons of simplicity and time, we elect to instead
compute the ratio of the probabilities of each model at the best fit parameters, i.e. the
delta log-likelihood . This is justified in the limit that the posterior is uni-modal and peaky
around the best fit value, dominating the integral in the Bayesian evidence. We calibrate
the delta log-likelihood statistic by measuring its distribution in zero-signal toy Monte Carlo
simulations.

2.4 Implementation

We use the Minuit minimizer to find best fit parameters for the model. We minimize the
negative log form of equation 4.

—log P(K|D) = K —logTNorm(kyN|900,90)
— log T'Norm(kN|100, 100) (7)
_ log(zé\]bootstrapsHéveventsE . P;(.TZ))

In the above equation, K is the normalization constant, which we set to 0. The marginaliza-
tion over P (Z) is evaluated by Monte Carlo integration, where we use the bootstrap samples
described in section 2.1 as our sample points. This numeric integration at each parameter
value forces us to assume the unusual form of Eq 7 where we explicitly multiply the prob-
abilities of each event (which may lead to errors from finite precision) instead of the usual
form ©N log P(z;]k). We would like to stress that the bootstraps are not over the data
points measuring in each data set. Instead, we bootstrap the event channel Monte Carlo
and measure a PDF P*(Z) for each random draw as described in section 2.1.



3 Toy studies

We study the effectiveness of this discriminating procedure by running over many toy
datasets. We randomly select datasets from the MC samples provided: background 1 (bkgl),
background 2 (bkg2), and signal (sig). We sample from the background distributions ac-
cording to the priors described in the problem description: a truncated Gaussian with mean
of 900 and width 90 for bkgl and a truncated Gaussian with mean of 100 and width 100 for
bkg2. We generate 1000 datasets with this cocktail, taking care not to repeat events within
a given dataset. We also generate 1000 different datasets using the same sampling recipe
(but not the exact same events) for the backgrounds, but this time we embed exactly 75
random events from the sig dataset.

We then fit these datasets using the technique described in the previous section. We run
over the datasets with different values for the range (rg) in which to count the nearest
neighbors: 0.005, 0.010, and 0.020. We try different values for the number of bootstrap
samples to generate: 10, 100, and 1000. We also run over the datasets where we do not
use the bootstraps, and instead only use the PDF calculated from the original provided MC
samples. This is referred to as the 0 bootstrap set of trials.

3.1 Significance of observation of signal

For each dataset, we run two fits: one fit where we allow the procedure to fit for bkgl,
bkg2 and sig, and one fit where we set sig=0. We look at the different in the negative log
likelihoods (NLL) and use a fairly common definition for the significance (o) of the observed
signal, where the likelihood function is approximated as Gaussian around the minimum.

oc=vV2ANLL

We do not interpret this quantity as a rigorous derivation of the width of a Gaussian around
the minimum. Instead, we run over the 1000 toy datasets with 0 signal events, and find
the value below which 99% of the fits lie. We interpret this as the point at which we could
assume a 1% rate for Type I errors. This value is referred to as og9 in later sections.

For each dataset with 75 events, we find ogg for that # of bootstraps and r,, and count how
many of the datasets lie above this value. We interpret this fraction as the discriminating
power of the procedure.

3.2 Failed fits

We found that for the toy fits where there were 0 signal events and 10,100, or 1000 bootstraps
were generated, 20-27% of the fits failed when the procedure had the freedom to add signal
events. However, the fit where no signal events were assumed would succeed for almost all
(less than 2 out of 1000 failed) of the datasets. For the purposes of our study, we assigned
these fits to have 0 significance and included them in our determination of ggg.



For the 0 bootstrap samples, about 50% of the fits failed in this fashion.

The “failure” of the fits, were for one of two reasons: either Minuit was not able to calculate
a good error matrix, even though the values to which it converged looked reasonable, or there
seemed to be some precision issue such that the NLL was very small, but slightly negative
and so the square root would return nan. It may be that there was some normalization issue
in the code that we did not track down, but with limited time we chose to simply include
these fits as “good” with 0 significance.

3.3 Results from toy studies

The distributions for the o quantity for both the 0 signal events datasets and the 75 signal
events datasets can be seen in Figs. 1-3 for the tested values of # of bootstraps and r,.
Dashed lines in the figures represent the ogg value.

Table 2 summarizes the results of these studies showing og9 and the power for each of these
studies. These values are shown in graphical form in Fig. 4 and Fig. 5.

It is questionable whether 1000 toy studies is enough to discern any significant differences
between the different settings for the fit (# bootstraps, r5). We note that for the # boot-
strap=1000 studies, we appear to lose some discriminating power as r, is increased. This is
perhaps to be expected as increasing s means one loses sensitivity to rapid changes in the
distribution of MC events across the z-axis.

All of the studies yield fairly consistent results, although we stress we do not actually know
how significant these differences are. However, we need to pick a particular setting to use
with the datasets and so we settle on the one that gives us the greatest discriminating power
according to these studies: # bootstraps=1000 and r, = 0.005, which yields a discriminating
power of 95.3% with a Type I error of 1%.



# bootstraps: 0 # bootstraps: 10
radius: 0.005 radius: 0.005

4
o
-3

o
1=
&

o
o
5

Arbitrary units
Arbitrary units

e
Q
[}

1 & n
75 6 7 8 75 6 78
\2A NLL \2A NLL
# bootstraps: 100 # bootstraps: 1000

radius: 0.005 radius: 0.005

e
3
=

Arbitrary units
Arbitrary units

0.02

2A NLL N2A NLL

Figure 1: Distribution of significance for 1000 toy studies with 0 signal events embedded
(blue) or 75 signal events embedded (shaded tan). Studies were run with 0, 10, 100, and
1000 bootstrap samples, as indicated in each figure. These studies use 0.005 as the range, 7,
in which to count the nearest neighbors, as described in the text. There are some datasets
in the 0 signal events sample which are not plotted here due to a pathology in the fitting
routine. However, they are counted as a 0 significance dataset. The dashed line indicates the
point below which 99% of the 0 signal event datasets lie. Note that the areas are normalized
to be the same for each distribution, including underflows and overflows.
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Figure 2: Distribution of significance for 1000 toy studies with 0 signal events embedded
(blue) or 75 signal events embedded (shaded tan). Studies were run with 0, 10, 100, and
1000 bootstrap samples, as indicated in each figure. These studies use 0.010 as the range, 7,
in which to count the nearest neighbors, as described in the text. There are some datasets
in the 0 signal events sample which are not plotted here due to a pathology in the fitting
routine. However, they are counted as a 0 significance dataset. The dashed line indicates the
point below which 99% of the 0 signal event datasets lie. Note that the areas are normalized
to be the same for each distribution, including underflows and overflows.
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Figure 3: Distribution of significance for 1000 toy studies with 0 signal events embedded
(blue) or 75 signal events embedded (shaded tan). Studies were run with 0, 10, 100, and
1000 bootstrap samples, as indicated in each figure. These studies use 0.020 as the range, 7,
in which to count the nearest neighbors, as described in the text. There are some datasets
in the 0 signal events sample which are not plotted here due to a pathology in the fitting
routine. However, they are counted as a 0 significance dataset. The dashed line indicates the
point below which 99% of the 0 signal event datasets lie. Note that the areas are normalized
to be the same for each distribution, including underflows and overflows.
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Table 1: Summary of toy studies. For each of the studies, 1000 datasets with 0 signal
events and 1000 datasets with 75 signal events were fit to two hypothesis: that the dataset
consisted of some cocktail of the two background and the signal or some cocktail of only the
two backgrounds. Shown is the gg9 quantity and the power for the procedure given some #
of bootstraps and range, 7, used in the fit. See text for more description of this procedure.

# bootstraps ‘ T H 099 Power (fraction)
0 0.005 || 2.48 0.933
0 0.010 || 2.32 0.942
0 0.020 || 2.29 0.926
10 0.005 || 2.68 0.939
10 0.010 || 2.87 0.935
10 0.020 || 3.12 0.946
100 0.005 || 2.83 0.936
100 0.010 || 2.96 0.938
100 0.020 || 3.17 0.933
1000 0.005 || 2.63 0.953
1000 0.010 || 2.86 0.941
1000 0.020 || 3.10 0.936
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Figure 4: Summary of toy studies with 0 signal events embedded. For a given toy study
where n bootstrap samples were run using r as the r¢ in which to find the number of nearest

neighbors, we plot the value of ¢ (0 = V2ANLL) below which 99% of those datasets lie.
This is interpreted as the value which would yield a 1% Type I error rate.
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Figure 5: Summary of toy studies with 75 signal events embedded. For a given toy study
where n bootstrap samples were run using r as the r, in which to find the number of nearest
neighbors, we plot the fraction of datasets which lie above the value of 0 (0 = V2ANLL)
which gives a 1% Type I error rate for that combination of n and r.
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Table 2: Summary of fits to the data samples. Shown is the o99 quantity and the power for
the procedure given some # of bootstraps and range, r, used in the fit. See text for more
description of this procedure.

# bootstraps ‘ T H 099  Power (fraction)
100 0.005 || 2.83 0.101
100 0.010 || 2.96 0.101
1000 0.005 || 2.63 0.108
1000 0.010 || 2.86 0.103

4 Results from the “data”

While we have settled on a particular settings to use for the 20,000 “real” datasets, we run
studies with # bootstraps to be 100 and 1000 and r, to be 0.005 and 0.010. The distributions
for o is shown in Fig. 6 and Fig. 7, along with the distributions for the toy studies with 0
signal events. Note that the areas are normalized to be the same for each distribution,
including underflows and overflows. The summary of these results is shown in Table 2 and
in graphical form in Fig. 8 and Fig. 9.

We find that about 10% of the datasets show a significant signal for all settings of the fit.
We also note that 25-27% of the fits “fail” as described in the earlier section. These fits are
assigned 0 for the significance and interpreted as not containing signal events.

The final results for the 20,000 datafiles will be for # bootstraps = 1000 and r, = 0.005.
The determination of a significant signal or not will be for ¢ > 2.63, where o is described
earlier in the text. The filename containing the final results is final results.txt and the
format is a text file with three columns: dataset number, “yes” or “no” for the question of
signal, and the significance (o) returned by our procedure for that dataset. A snippet of the
results file follows.

329 mno 0.000
330 yes 3.806
331 no 1.868
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Figure 6: Distribution of significance for the provided datasets. Shown are the 1000 toy
studies with 0 signal events embedded (blue) and the 20000 provided datasets (shaded tan).
Studies were run with 100 and 1000 bootstrap samples, as indicated in each figure. These
studies use 0.005 as the range, r,, in which to count the nearest neighbors, as described in the
text. There are some datasets in the 0 signal events sample which are not plotted here due
to a pathology in the fitting routine. However, they are counted as a 0 significance dataset.
The dashed line indicates the point below which 99% of the 0 signal event datasets lie. Note
that the areas are normalized to be the same for each distribution, including underflows and

overflows.
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Figure 7: Distribution of significance for the provided datasets. Shown are the 1000 toy
studies with 0 signal events embedded (blue) and the 20000 provided datasets (shaded tan).
Studies were run with 100 and 1000 bootstrap samples, as indicated in each figure. These
studies use 0.005 as the range, r,, in which to count the nearest neighbors, as described in the
text. There are some datasets in the 0 signal events sample which are not plotted here due
to a pathology in the fitting routine. However, they are counted as a 0 significance dataset.
The dashed line indicates the point below which 99% of the 0 signal event datasets lie. Note
that the areas are normalized to be the same for each distribution, including underflows and
overflows.
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Figure 8: Distribution of significance for 1000 toy studies with 0 signal events embedded
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5 Summary

The nearest neighbor “fit” yields a 95% discriminating power at a 1% Type I error rate
for samples with 75 signal events. The results from applying this procedure to the 20,000
datasets can be found in the attached text files.

There are still some outstanding questions that were not addressed by this study, primarily
because of time constraints on the authors.

e The issue of the “failed” fits when there are 0 signal events, but the fit has the freedom
to include signal. This could probably be addressed with some fine tuning of the fitting
code.

e Length of time to run a fit. When we use 1000 bootstraps, it takes about 2.0-2.5
minutes to run both fits (2 bkg and 1 sig or just 2 bkg) on a dataset with approximately
1000 events. The time sink is calculating the nearest neighbors for all 1000 bootstrap
samples. We run our jobs on the SLAC batch queue, so we are able to complete a
MC study in a reasonable amount of time. However, if one wanted to optimize this
procedure, there are probably code improvement that could be made or the nearest
neighbor calculation could be moved to the GPU using CUDA or a similar programming
language.

e The significance of the differences between the different fit options used in the toy
studies was not addressed by this analyses. One would want to run more MC to test
this (10,000 datasets? 100,000 datasets?)

In the end, this has been a very interesting exercise which forced us to examine some of these
statistical issues at a closer level than we have previously done. We thank the organizers for
taking the time to put together this challenge.
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